\(\int \frac {1}{(a \sin (c+d x)+b \tan (c+d x))^3} \, dx\) [267]

   Optimal result
   Rubi [A] (verified)
   Mathematica [C] (verified)
   Maple [A] (verified)
   Fricas [B] (verification not implemented)
   Sympy [F]
   Maxima [B] (verification not implemented)
   Giac [B] (verification not implemented)
   Mupad [B] (verification not implemented)

Optimal result

Integrand size = 19, antiderivative size = 229 \[ \int \frac {1}{(a \sin (c+d x)+b \tan (c+d x))^3} \, dx=-\frac {b^3}{2 \left (a^2-b^2\right )^2 d (b+a \cos (c+d x))^2}+\frac {b^2 \left (3 a^2+b^2\right )}{\left (a^2-b^2\right )^3 d (b+a \cos (c+d x))}+\frac {\left (b \left (3 a^2+b^2\right )-a \left (a^2+3 b^2\right ) \cos (c+d x)\right ) \csc ^2(c+d x)}{2 \left (a^2-b^2\right )^3 d}+\frac {(a-2 b) \log (1-\cos (c+d x))}{4 (a+b)^4 d}-\frac {(a+2 b) \log (1+\cos (c+d x))}{4 (a-b)^4 d}+\frac {b \left (3 a^4+8 a^2 b^2+b^4\right ) \log (b+a \cos (c+d x))}{\left (a^2-b^2\right )^4 d} \]

[Out]

-1/2*b^3/(a^2-b^2)^2/d/(b+a*cos(d*x+c))^2+b^2*(3*a^2+b^2)/(a^2-b^2)^3/d/(b+a*cos(d*x+c))+1/2*(b*(3*a^2+b^2)-a*
(a^2+3*b^2)*cos(d*x+c))*csc(d*x+c)^2/(a^2-b^2)^3/d+1/4*(a-2*b)*ln(1-cos(d*x+c))/(a+b)^4/d-1/4*(a+2*b)*ln(1+cos
(d*x+c))/(a-b)^4/d+b*(3*a^4+8*a^2*b^2+b^4)*ln(b+a*cos(d*x+c))/(a^2-b^2)^4/d

Rubi [A] (verified)

Time = 0.67 (sec) , antiderivative size = 229, normalized size of antiderivative = 1.00, number of steps used = 5, number of rules used = 4, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.211, Rules used = {4482, 2800, 1661, 1643} \[ \int \frac {1}{(a \sin (c+d x)+b \tan (c+d x))^3} \, dx=\frac {b^2 \left (3 a^2+b^2\right )}{d \left (a^2-b^2\right )^3 (a \cos (c+d x)+b)}+\frac {\csc ^2(c+d x) \left (b \left (3 a^2+b^2\right )-a \left (a^2+3 b^2\right ) \cos (c+d x)\right )}{2 d \left (a^2-b^2\right )^3}-\frac {b^3}{2 d \left (a^2-b^2\right )^2 (a \cos (c+d x)+b)^2}+\frac {b \left (3 a^4+8 a^2 b^2+b^4\right ) \log (a \cos (c+d x)+b)}{d \left (a^2-b^2\right )^4}+\frac {(a-2 b) \log (1-\cos (c+d x))}{4 d (a+b)^4}-\frac {(a+2 b) \log (\cos (c+d x)+1)}{4 d (a-b)^4} \]

[In]

Int[(a*Sin[c + d*x] + b*Tan[c + d*x])^(-3),x]

[Out]

-1/2*b^3/((a^2 - b^2)^2*d*(b + a*Cos[c + d*x])^2) + (b^2*(3*a^2 + b^2))/((a^2 - b^2)^3*d*(b + a*Cos[c + d*x]))
 + ((b*(3*a^2 + b^2) - a*(a^2 + 3*b^2)*Cos[c + d*x])*Csc[c + d*x]^2)/(2*(a^2 - b^2)^3*d) + ((a - 2*b)*Log[1 -
Cos[c + d*x]])/(4*(a + b)^4*d) - ((a + 2*b)*Log[1 + Cos[c + d*x]])/(4*(a - b)^4*d) + (b*(3*a^4 + 8*a^2*b^2 + b
^4)*Log[b + a*Cos[c + d*x]])/((a^2 - b^2)^4*d)

Rule 1643

Int[(Pq_)*((d_) + (e_.)*(x_))^(m_.)*((a_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> Int[ExpandIntegrand[(d + e*x)^m*
Pq*(a + c*x^2)^p, x], x] /; FreeQ[{a, c, d, e, m}, x] && PolyQ[Pq, x] && IGtQ[p, -2]

Rule 1661

Int[(Pq_)*((d_) + (e_.)*(x_))^(m_.)*((a_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> With[{Q = PolynomialQuotient[(d +
 e*x)^m*Pq, a + c*x^2, x], f = Coeff[PolynomialRemainder[(d + e*x)^m*Pq, a + c*x^2, x], x, 0], g = Coeff[Polyn
omialRemainder[(d + e*x)^m*Pq, a + c*x^2, x], x, 1]}, Simp[(a*g - c*f*x)*((a + c*x^2)^(p + 1)/(2*a*c*(p + 1)))
, x] + Dist[1/(2*a*c*(p + 1)), Int[(d + e*x)^m*(a + c*x^2)^(p + 1)*ExpandToSum[(2*a*c*(p + 1)*Q)/(d + e*x)^m +
 (c*f*(2*p + 3))/(d + e*x)^m, x], x], x]] /; FreeQ[{a, c, d, e}, x] && PolyQ[Pq, x] && NeQ[c*d^2 + a*e^2, 0] &
& LtQ[p, -1] && ILtQ[m, 0]

Rule 2800

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*tan[(e_.) + (f_.)*(x_)]^(p_.), x_Symbol] :> Dist[1/f, Subst[I
nt[(x^p*(a + x)^m)/(b^2 - x^2)^((p + 1)/2), x], x, b*Sin[e + f*x]], x] /; FreeQ[{a, b, e, f, m}, x] && NeQ[a^2
 - b^2, 0] && IntegerQ[(p + 1)/2]

Rule 4482

Int[u_, x_Symbol] :> Int[TrigSimplify[u], x] /; TrigSimplifyQ[u]

Rubi steps \begin{align*} \text {integral}& = \int \frac {\cot ^3(c+d x)}{(b+a \cos (c+d x))^3} \, dx \\ & = -\frac {\text {Subst}\left (\int \frac {x^3}{(b+x)^3 \left (a^2-x^2\right )^2} \, dx,x,a \cos (c+d x)\right )}{d} \\ & = \frac {\left (b \left (3 a^2+b^2\right )-a \left (a^2+3 b^2\right ) \cos (c+d x)\right ) \csc ^2(c+d x)}{2 \left (a^2-b^2\right )^3 d}-\frac {\text {Subst}\left (\int \frac {-\frac {a^4 b^3 \left (a^2+3 b^2\right )}{\left (a^2-b^2\right )^3}-\frac {a^2 b^2 \left (3 a^4+3 a^2 b^2-2 b^4\right ) x}{\left (a^2-b^2\right )^3}-\frac {a^4 b \left (3 a^2-7 b^2\right ) x^2}{\left (a^2-b^2\right )^3}+\frac {a^4 \left (a^2+3 b^2\right ) x^3}{\left (a^2-b^2\right )^3}}{(b+x)^3 \left (a^2-x^2\right )} \, dx,x,a \cos (c+d x)\right )}{2 a^2 d} \\ & = \frac {\left (b \left (3 a^2+b^2\right )-a \left (a^2+3 b^2\right ) \cos (c+d x)\right ) \csc ^2(c+d x)}{2 \left (a^2-b^2\right )^3 d}-\frac {\text {Subst}\left (\int \left (\frac {a^2 (a-2 b)}{2 (a+b)^4 (a-x)}+\frac {a^2 (a+2 b)}{2 (a-b)^4 (a+x)}-\frac {2 a^2 b^3}{\left (a^2-b^2\right )^2 (b+x)^3}+\frac {2 a^2 b^2 \left (3 a^2+b^2\right )}{\left (a^2-b^2\right )^3 (b+x)^2}-\frac {2 a^2 b \left (3 a^4+8 a^2 b^2+b^4\right )}{\left (a^2-b^2\right )^4 (b+x)}\right ) \, dx,x,a \cos (c+d x)\right )}{2 a^2 d} \\ & = -\frac {b^3}{2 \left (a^2-b^2\right )^2 d (b+a \cos (c+d x))^2}+\frac {b^2 \left (3 a^2+b^2\right )}{\left (a^2-b^2\right )^3 d (b+a \cos (c+d x))}+\frac {\left (b \left (3 a^2+b^2\right )-a \left (a^2+3 b^2\right ) \cos (c+d x)\right ) \csc ^2(c+d x)}{2 \left (a^2-b^2\right )^3 d}+\frac {(a-2 b) \log (1-\cos (c+d x))}{4 (a+b)^4 d}-\frac {(a+2 b) \log (1+\cos (c+d x))}{4 (a-b)^4 d}+\frac {b \left (3 a^4+8 a^2 b^2+b^4\right ) \log (b+a \cos (c+d x))}{\left (a^2-b^2\right )^4 d} \\ \end{align*}

Mathematica [C] (verified)

Result contains complex when optimal does not.

Time = 6.51 (sec) , antiderivative size = 696, normalized size of antiderivative = 3.04 \[ \int \frac {1}{(a \sin (c+d x)+b \tan (c+d x))^3} \, dx=-\frac {b^3 (b+a \cos (c+d x)) \tan ^3(c+d x)}{2 (-a+b)^2 (a+b)^2 d (a \sin (c+d x)+b \tan (c+d x))^3}-\frac {b^2 \left (3 a^2+b^2\right ) (b+a \cos (c+d x))^2 \tan ^3(c+d x)}{(-a+b)^3 (a+b)^3 d (a \sin (c+d x)+b \tan (c+d x))^3}-\frac {2 i \left (3 a^4 b+8 a^2 b^3+b^5\right ) (c+d x) (b+a \cos (c+d x))^3 \tan ^3(c+d x)}{(a-b)^4 (a+b)^4 d (a \sin (c+d x)+b \tan (c+d x))^3}-\frac {i (-a-2 b) \arctan (\tan (c+d x)) (b+a \cos (c+d x))^3 \tan ^3(c+d x)}{2 (-a+b)^4 d (a \sin (c+d x)+b \tan (c+d x))^3}-\frac {i (a-2 b) \arctan (\tan (c+d x)) (b+a \cos (c+d x))^3 \tan ^3(c+d x)}{2 (a+b)^4 d (a \sin (c+d x)+b \tan (c+d x))^3}-\frac {(b+a \cos (c+d x))^3 \csc ^2\left (\frac {1}{2} (c+d x)\right ) \tan ^3(c+d x)}{8 (a+b)^3 d (a \sin (c+d x)+b \tan (c+d x))^3}+\frac {(-a-2 b) (b+a \cos (c+d x))^3 \log \left (\cos ^2\left (\frac {1}{2} (c+d x)\right )\right ) \tan ^3(c+d x)}{4 (-a+b)^4 d (a \sin (c+d x)+b \tan (c+d x))^3}+\frac {\left (3 a^4 b+8 a^2 b^3+b^5\right ) (b+a \cos (c+d x))^3 \log (b+a \cos (c+d x)) \tan ^3(c+d x)}{\left (-a^2+b^2\right )^4 d (a \sin (c+d x)+b \tan (c+d x))^3}+\frac {(a-2 b) (b+a \cos (c+d x))^3 \log \left (\sin ^2\left (\frac {1}{2} (c+d x)\right )\right ) \tan ^3(c+d x)}{4 (a+b)^4 d (a \sin (c+d x)+b \tan (c+d x))^3}-\frac {(b+a \cos (c+d x))^3 \sec ^2\left (\frac {1}{2} (c+d x)\right ) \tan ^3(c+d x)}{8 (-a+b)^3 d (a \sin (c+d x)+b \tan (c+d x))^3} \]

[In]

Integrate[(a*Sin[c + d*x] + b*Tan[c + d*x])^(-3),x]

[Out]

-1/2*(b^3*(b + a*Cos[c + d*x])*Tan[c + d*x]^3)/((-a + b)^2*(a + b)^2*d*(a*Sin[c + d*x] + b*Tan[c + d*x])^3) -
(b^2*(3*a^2 + b^2)*(b + a*Cos[c + d*x])^2*Tan[c + d*x]^3)/((-a + b)^3*(a + b)^3*d*(a*Sin[c + d*x] + b*Tan[c +
d*x])^3) - ((2*I)*(3*a^4*b + 8*a^2*b^3 + b^5)*(c + d*x)*(b + a*Cos[c + d*x])^3*Tan[c + d*x]^3)/((a - b)^4*(a +
 b)^4*d*(a*Sin[c + d*x] + b*Tan[c + d*x])^3) - ((I/2)*(-a - 2*b)*ArcTan[Tan[c + d*x]]*(b + a*Cos[c + d*x])^3*T
an[c + d*x]^3)/((-a + b)^4*d*(a*Sin[c + d*x] + b*Tan[c + d*x])^3) - ((I/2)*(a - 2*b)*ArcTan[Tan[c + d*x]]*(b +
 a*Cos[c + d*x])^3*Tan[c + d*x]^3)/((a + b)^4*d*(a*Sin[c + d*x] + b*Tan[c + d*x])^3) - ((b + a*Cos[c + d*x])^3
*Csc[(c + d*x)/2]^2*Tan[c + d*x]^3)/(8*(a + b)^3*d*(a*Sin[c + d*x] + b*Tan[c + d*x])^3) + ((-a - 2*b)*(b + a*C
os[c + d*x])^3*Log[Cos[(c + d*x)/2]^2]*Tan[c + d*x]^3)/(4*(-a + b)^4*d*(a*Sin[c + d*x] + b*Tan[c + d*x])^3) +
((3*a^4*b + 8*a^2*b^3 + b^5)*(b + a*Cos[c + d*x])^3*Log[b + a*Cos[c + d*x]]*Tan[c + d*x]^3)/((-a^2 + b^2)^4*d*
(a*Sin[c + d*x] + b*Tan[c + d*x])^3) + ((a - 2*b)*(b + a*Cos[c + d*x])^3*Log[Sin[(c + d*x)/2]^2]*Tan[c + d*x]^
3)/(4*(a + b)^4*d*(a*Sin[c + d*x] + b*Tan[c + d*x])^3) - ((b + a*Cos[c + d*x])^3*Sec[(c + d*x)/2]^2*Tan[c + d*
x]^3)/(8*(-a + b)^3*d*(a*Sin[c + d*x] + b*Tan[c + d*x])^3)

Maple [A] (verified)

Time = 5.07 (sec) , antiderivative size = 196, normalized size of antiderivative = 0.86

method result size
derivativedivides \(\frac {\frac {1}{4 \left (a -b \right )^{3} \left (\cos \left (d x +c \right )+1\right )}+\frac {\left (-a -2 b \right ) \ln \left (\cos \left (d x +c \right )+1\right )}{4 \left (a -b \right )^{4}}+\frac {1}{4 \left (a +b \right )^{3} \left (\cos \left (d x +c \right )-1\right )}+\frac {\left (a -2 b \right ) \ln \left (\cos \left (d x +c \right )-1\right )}{4 \left (a +b \right )^{4}}-\frac {b^{3}}{2 \left (a +b \right )^{2} \left (a -b \right )^{2} \left (b +\cos \left (d x +c \right ) a \right )^{2}}+\frac {b \left (3 a^{4}+8 a^{2} b^{2}+b^{4}\right ) \ln \left (b +\cos \left (d x +c \right ) a \right )}{\left (a +b \right )^{4} \left (a -b \right )^{4}}+\frac {b^{2} \left (3 a^{2}+b^{2}\right )}{\left (a +b \right )^{3} \left (a -b \right )^{3} \left (b +\cos \left (d x +c \right ) a \right )}}{d}\) \(196\)
default \(\frac {\frac {1}{4 \left (a -b \right )^{3} \left (\cos \left (d x +c \right )+1\right )}+\frac {\left (-a -2 b \right ) \ln \left (\cos \left (d x +c \right )+1\right )}{4 \left (a -b \right )^{4}}+\frac {1}{4 \left (a +b \right )^{3} \left (\cos \left (d x +c \right )-1\right )}+\frac {\left (a -2 b \right ) \ln \left (\cos \left (d x +c \right )-1\right )}{4 \left (a +b \right )^{4}}-\frac {b^{3}}{2 \left (a +b \right )^{2} \left (a -b \right )^{2} \left (b +\cos \left (d x +c \right ) a \right )^{2}}+\frac {b \left (3 a^{4}+8 a^{2} b^{2}+b^{4}\right ) \ln \left (b +\cos \left (d x +c \right ) a \right )}{\left (a +b \right )^{4} \left (a -b \right )^{4}}+\frac {b^{2} \left (3 a^{2}+b^{2}\right )}{\left (a +b \right )^{3} \left (a -b \right )^{3} \left (b +\cos \left (d x +c \right ) a \right )}}{d}\) \(196\)
risch \(\text {Expression too large to display}\) \(1330\)

[In]

int(1/(sin(d*x+c)*a+b*tan(d*x+c))^3,x,method=_RETURNVERBOSE)

[Out]

1/d*(1/4/(a-b)^3/(cos(d*x+c)+1)+1/4/(a-b)^4*(-a-2*b)*ln(cos(d*x+c)+1)+1/4/(a+b)^3/(cos(d*x+c)-1)+1/4*(a-2*b)/(
a+b)^4*ln(cos(d*x+c)-1)-1/2*b^3/(a+b)^2/(a-b)^2/(b+cos(d*x+c)*a)^2+b*(3*a^4+8*a^2*b^2+b^4)/(a+b)^4/(a-b)^4*ln(
b+cos(d*x+c)*a)+b^2*(3*a^2+b^2)/(a+b)^3/(a-b)^3/(b+cos(d*x+c)*a))

Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 1071 vs. \(2 (221) = 442\).

Time = 0.42 (sec) , antiderivative size = 1071, normalized size of antiderivative = 4.68 \[ \int \frac {1}{(a \sin (c+d x)+b \tan (c+d x))^3} \, dx=\text {Too large to display} \]

[In]

integrate(1/(a*sin(d*x+c)+b*tan(d*x+c))^3,x, algorithm="fricas")

[Out]

-1/4*(16*a^4*b^3 - 8*a^2*b^5 - 8*b^7 - 2*(a^7 + 8*a^5*b^2 - 7*a^3*b^4 - 2*a*b^6)*cos(d*x + c)^3 + 2*(a^6*b - 1
1*a^4*b^3 + 7*a^2*b^5 + 3*b^7)*cos(d*x + c)^2 + 2*(11*a^5*b^2 - 10*a^3*b^4 - a*b^6)*cos(d*x + c) + 4*(3*a^4*b^
3 + 8*a^2*b^5 + b^7 - (3*a^6*b + 8*a^4*b^3 + a^2*b^5)*cos(d*x + c)^4 - 2*(3*a^5*b^2 + 8*a^3*b^4 + a*b^6)*cos(d
*x + c)^3 + (3*a^6*b + 5*a^4*b^3 - 7*a^2*b^5 - b^7)*cos(d*x + c)^2 + 2*(3*a^5*b^2 + 8*a^3*b^4 + a*b^6)*cos(d*x
 + c))*log(a*cos(d*x + c) + b) - (a^5*b^2 + 6*a^4*b^3 + 14*a^3*b^4 + 16*a^2*b^5 + 9*a*b^6 + 2*b^7 - (a^7 + 6*a
^6*b + 14*a^5*b^2 + 16*a^4*b^3 + 9*a^3*b^4 + 2*a^2*b^5)*cos(d*x + c)^4 - 2*(a^6*b + 6*a^5*b^2 + 14*a^4*b^3 + 1
6*a^3*b^4 + 9*a^2*b^5 + 2*a*b^6)*cos(d*x + c)^3 + (a^7 + 6*a^6*b + 13*a^5*b^2 + 10*a^4*b^3 - 5*a^3*b^4 - 14*a^
2*b^5 - 9*a*b^6 - 2*b^7)*cos(d*x + c)^2 + 2*(a^6*b + 6*a^5*b^2 + 14*a^4*b^3 + 16*a^3*b^4 + 9*a^2*b^5 + 2*a*b^6
)*cos(d*x + c))*log(1/2*cos(d*x + c) + 1/2) + (a^5*b^2 - 6*a^4*b^3 + 14*a^3*b^4 - 16*a^2*b^5 + 9*a*b^6 - 2*b^7
 - (a^7 - 6*a^6*b + 14*a^5*b^2 - 16*a^4*b^3 + 9*a^3*b^4 - 2*a^2*b^5)*cos(d*x + c)^4 - 2*(a^6*b - 6*a^5*b^2 + 1
4*a^4*b^3 - 16*a^3*b^4 + 9*a^2*b^5 - 2*a*b^6)*cos(d*x + c)^3 + (a^7 - 6*a^6*b + 13*a^5*b^2 - 10*a^4*b^3 - 5*a^
3*b^4 + 14*a^2*b^5 - 9*a*b^6 + 2*b^7)*cos(d*x + c)^2 + 2*(a^6*b - 6*a^5*b^2 + 14*a^4*b^3 - 16*a^3*b^4 + 9*a^2*
b^5 - 2*a*b^6)*cos(d*x + c))*log(-1/2*cos(d*x + c) + 1/2))/((a^10 - 4*a^8*b^2 + 6*a^6*b^4 - 4*a^4*b^6 + a^2*b^
8)*d*cos(d*x + c)^4 + 2*(a^9*b - 4*a^7*b^3 + 6*a^5*b^5 - 4*a^3*b^7 + a*b^9)*d*cos(d*x + c)^3 - (a^10 - 5*a^8*b
^2 + 10*a^6*b^4 - 10*a^4*b^6 + 5*a^2*b^8 - b^10)*d*cos(d*x + c)^2 - 2*(a^9*b - 4*a^7*b^3 + 6*a^5*b^5 - 4*a^3*b
^7 + a*b^9)*d*cos(d*x + c) - (a^8*b^2 - 4*a^6*b^4 + 6*a^4*b^6 - 4*a^2*b^8 + b^10)*d)

Sympy [F]

\[ \int \frac {1}{(a \sin (c+d x)+b \tan (c+d x))^3} \, dx=\int \frac {1}{\left (a \sin {\left (c + d x \right )} + b \tan {\left (c + d x \right )}\right )^{3}}\, dx \]

[In]

integrate(1/(a*sin(d*x+c)+b*tan(d*x+c))**3,x)

[Out]

Integral((a*sin(c + d*x) + b*tan(c + d*x))**(-3), x)

Maxima [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 601 vs. \(2 (221) = 442\).

Time = 0.25 (sec) , antiderivative size = 601, normalized size of antiderivative = 2.62 \[ \int \frac {1}{(a \sin (c+d x)+b \tan (c+d x))^3} \, dx=\frac {\frac {8 \, {\left (3 \, a^{4} b + 8 \, a^{2} b^{3} + b^{5}\right )} \log \left (a + b - \frac {{\left (a - b\right )} \sin \left (d x + c\right )^{2}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{2}}\right )}{a^{8} - 4 \, a^{6} b^{2} + 6 \, a^{4} b^{4} - 4 \, a^{2} b^{6} + b^{8}} + \frac {4 \, {\left (a - 2 \, b\right )} \log \left (\frac {\sin \left (d x + c\right )}{\cos \left (d x + c\right ) + 1}\right )}{a^{4} + 4 \, a^{3} b + 6 \, a^{2} b^{2} + 4 \, a b^{3} + b^{4}} - \frac {a^{6} - 2 \, a^{5} b - a^{4} b^{2} + 4 \, a^{3} b^{3} - a^{2} b^{4} - 2 \, a b^{5} + b^{6} - \frac {2 \, {\left (a^{6} - 4 \, a^{5} b + 29 \, a^{4} b^{2} + 24 \, a^{3} b^{3} + 11 \, a^{2} b^{4} + 20 \, a b^{5} - b^{6}\right )} \sin \left (d x + c\right )^{2}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{2}} + \frac {{\left (a^{6} - 6 \, a^{5} b + 63 \, a^{4} b^{2} - 52 \, a^{3} b^{3} + 31 \, a^{2} b^{4} - 38 \, a b^{5} + b^{6}\right )} \sin \left (d x + c\right )^{4}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{4}}}{\frac {{\left (a^{9} + a^{8} b - 4 \, a^{7} b^{2} - 4 \, a^{6} b^{3} + 6 \, a^{5} b^{4} + 6 \, a^{4} b^{5} - 4 \, a^{3} b^{6} - 4 \, a^{2} b^{7} + a b^{8} + b^{9}\right )} \sin \left (d x + c\right )^{2}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{2}} - \frac {2 \, {\left (a^{9} - a^{8} b - 4 \, a^{7} b^{2} + 4 \, a^{6} b^{3} + 6 \, a^{5} b^{4} - 6 \, a^{4} b^{5} - 4 \, a^{3} b^{6} + 4 \, a^{2} b^{7} + a b^{8} - b^{9}\right )} \sin \left (d x + c\right )^{4}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{4}} + \frac {{\left (a^{9} - 3 \, a^{8} b + 8 \, a^{6} b^{3} - 6 \, a^{5} b^{4} - 6 \, a^{4} b^{5} + 8 \, a^{3} b^{6} - 3 \, a b^{8} + b^{9}\right )} \sin \left (d x + c\right )^{6}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{6}}} + \frac {\sin \left (d x + c\right )^{2}}{{\left (a^{3} - 3 \, a^{2} b + 3 \, a b^{2} - b^{3}\right )} {\left (\cos \left (d x + c\right ) + 1\right )}^{2}}}{8 \, d} \]

[In]

integrate(1/(a*sin(d*x+c)+b*tan(d*x+c))^3,x, algorithm="maxima")

[Out]

1/8*(8*(3*a^4*b + 8*a^2*b^3 + b^5)*log(a + b - (a - b)*sin(d*x + c)^2/(cos(d*x + c) + 1)^2)/(a^8 - 4*a^6*b^2 +
 6*a^4*b^4 - 4*a^2*b^6 + b^8) + 4*(a - 2*b)*log(sin(d*x + c)/(cos(d*x + c) + 1))/(a^4 + 4*a^3*b + 6*a^2*b^2 +
4*a*b^3 + b^4) - (a^6 - 2*a^5*b - a^4*b^2 + 4*a^3*b^3 - a^2*b^4 - 2*a*b^5 + b^6 - 2*(a^6 - 4*a^5*b + 29*a^4*b^
2 + 24*a^3*b^3 + 11*a^2*b^4 + 20*a*b^5 - b^6)*sin(d*x + c)^2/(cos(d*x + c) + 1)^2 + (a^6 - 6*a^5*b + 63*a^4*b^
2 - 52*a^3*b^3 + 31*a^2*b^4 - 38*a*b^5 + b^6)*sin(d*x + c)^4/(cos(d*x + c) + 1)^4)/((a^9 + a^8*b - 4*a^7*b^2 -
 4*a^6*b^3 + 6*a^5*b^4 + 6*a^4*b^5 - 4*a^3*b^6 - 4*a^2*b^7 + a*b^8 + b^9)*sin(d*x + c)^2/(cos(d*x + c) + 1)^2
- 2*(a^9 - a^8*b - 4*a^7*b^2 + 4*a^6*b^3 + 6*a^5*b^4 - 6*a^4*b^5 - 4*a^3*b^6 + 4*a^2*b^7 + a*b^8 - b^9)*sin(d*
x + c)^4/(cos(d*x + c) + 1)^4 + (a^9 - 3*a^8*b + 8*a^6*b^3 - 6*a^5*b^4 - 6*a^4*b^5 + 8*a^3*b^6 - 3*a*b^8 + b^9
)*sin(d*x + c)^6/(cos(d*x + c) + 1)^6) + sin(d*x + c)^2/((a^3 - 3*a^2*b + 3*a*b^2 - b^3)*(cos(d*x + c) + 1)^2)
)/d

Giac [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 800 vs. \(2 (221) = 442\).

Time = 0.39 (sec) , antiderivative size = 800, normalized size of antiderivative = 3.49 \[ \int \frac {1}{(a \sin (c+d x)+b \tan (c+d x))^3} \, dx=\text {Too large to display} \]

[In]

integrate(1/(a*sin(d*x+c)+b*tan(d*x+c))^3,x, algorithm="giac")

[Out]

1/8*(2*(a - 2*b)*log(abs(-cos(d*x + c) + 1)/abs(cos(d*x + c) + 1))/(a^4 + 4*a^3*b + 6*a^2*b^2 + 4*a*b^3 + b^4)
 + 8*(3*a^4*b + 8*a^2*b^3 + b^5)*log(abs(-a - b - a*(cos(d*x + c) - 1)/(cos(d*x + c) + 1) + b*(cos(d*x + c) -
1)/(cos(d*x + c) + 1)))/(a^8 - 4*a^6*b^2 + 6*a^4*b^4 - 4*a^2*b^6 + b^8) + (a + b - 2*a*(cos(d*x + c) - 1)/(cos
(d*x + c) + 1) + 4*b*(cos(d*x + c) - 1)/(cos(d*x + c) + 1))*(cos(d*x + c) + 1)/((a^4 + 4*a^3*b + 6*a^2*b^2 + 4
*a*b^3 + b^4)*(cos(d*x + c) - 1)) - (cos(d*x + c) - 1)/((a^3 - 3*a^2*b + 3*a*b^2 - b^3)*(cos(d*x + c) + 1)) -
4*(9*a^6*b + 6*a^5*b^2 + 9*a^4*b^3 + 28*a^3*b^4 + 11*a^2*b^5 - 2*a*b^6 + 3*b^7 + 18*a^6*b*(cos(d*x + c) - 1)/(
cos(d*x + c) + 1) - 12*a^5*b^2*(cos(d*x + c) - 1)/(cos(d*x + c) + 1) + 26*a^4*b^3*(cos(d*x + c) - 1)/(cos(d*x
+ c) + 1) + 4*a^3*b^4*(cos(d*x + c) - 1)/(cos(d*x + c) + 1) - 38*a^2*b^5*(cos(d*x + c) - 1)/(cos(d*x + c) + 1)
 + 8*a*b^6*(cos(d*x + c) - 1)/(cos(d*x + c) + 1) - 6*b^7*(cos(d*x + c) - 1)/(cos(d*x + c) + 1) + 9*a^6*b*(cos(
d*x + c) - 1)^2/(cos(d*x + c) + 1)^2 - 18*a^5*b^2*(cos(d*x + c) - 1)^2/(cos(d*x + c) + 1)^2 + 33*a^4*b^3*(cos(
d*x + c) - 1)^2/(cos(d*x + c) + 1)^2 - 48*a^3*b^4*(cos(d*x + c) - 1)^2/(cos(d*x + c) + 1)^2 + 27*a^2*b^5*(cos(
d*x + c) - 1)^2/(cos(d*x + c) + 1)^2 - 6*a*b^6*(cos(d*x + c) - 1)^2/(cos(d*x + c) + 1)^2 + 3*b^7*(cos(d*x + c)
 - 1)^2/(cos(d*x + c) + 1)^2)/((a^8 - 4*a^6*b^2 + 6*a^4*b^4 - 4*a^2*b^6 + b^8)*(a + b + a*(cos(d*x + c) - 1)/(
cos(d*x + c) + 1) - b*(cos(d*x + c) - 1)/(cos(d*x + c) + 1))^2))/d

Mupad [B] (verification not implemented)

Time = 23.24 (sec) , antiderivative size = 494, normalized size of antiderivative = 2.16 \[ \int \frac {1}{(a \sin (c+d x)+b \tan (c+d x))^3} \, dx=\frac {{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^2}{8\,d\,{\left (a-b\right )}^3}-\frac {\frac {a^3-3\,a^2\,b+3\,a\,b^2-b^3}{2\,\left (a+b\right )}+\frac {{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^4\,\left (a^5-5\,a^4\,b+58\,a^3\,b^2+6\,a^2\,b^3+37\,a\,b^4-b^5\right )}{2\,\left (a+b\right )\,\left (a^2+2\,a\,b+b^2\right )}-\frac {{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^2\,\left (a^5-5\,a^4\,b+34\,a^3\,b^2-10\,a^2\,b^3+21\,a\,b^4-b^5\right )}{\left (a-b\right )\,\left (a^2+2\,a\,b+b^2\right )}}{d\,\left (\left (4\,a^5-20\,a^4\,b+40\,a^3\,b^2-40\,a^2\,b^3+20\,a\,b^4-4\,b^5\right )\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^6+\left (-8\,a^5+24\,a^4\,b-16\,a^3\,b^2-16\,a^2\,b^3+24\,a\,b^4-8\,b^5\right )\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^4+\left (4\,a^5-4\,a^4\,b-8\,a^3\,b^2+8\,a^2\,b^3+4\,a\,b^4-4\,b^5\right )\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^2\right )}+\frac {\ln \left (\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )\right )\,\left (a-2\,b\right )}{d\,\left (2\,a^4+8\,a^3\,b+12\,a^2\,b^2+8\,a\,b^3+2\,b^4\right )}+\frac {\ln \left (a+b-a\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^2+b\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^2\right )\,\left (3\,a^4\,b+8\,a^2\,b^3+b^5\right )}{d\,\left (a^8-4\,a^6\,b^2+6\,a^4\,b^4-4\,a^2\,b^6+b^8\right )} \]

[In]

int(1/(a*sin(c + d*x) + b*tan(c + d*x))^3,x)

[Out]

tan(c/2 + (d*x)/2)^2/(8*d*(a - b)^3) - ((3*a*b^2 - 3*a^2*b + a^3 - b^3)/(2*(a + b)) + (tan(c/2 + (d*x)/2)^4*(3
7*a*b^4 - 5*a^4*b + a^5 - b^5 + 6*a^2*b^3 + 58*a^3*b^2))/(2*(a + b)*(2*a*b + a^2 + b^2)) - (tan(c/2 + (d*x)/2)
^2*(21*a*b^4 - 5*a^4*b + a^5 - b^5 - 10*a^2*b^3 + 34*a^3*b^2))/((a - b)*(2*a*b + a^2 + b^2)))/(d*(tan(c/2 + (d
*x)/2)^2*(4*a*b^4 - 4*a^4*b + 4*a^5 - 4*b^5 + 8*a^2*b^3 - 8*a^3*b^2) - tan(c/2 + (d*x)/2)^4*(8*a^5 - 24*a^4*b
- 24*a*b^4 + 8*b^5 + 16*a^2*b^3 + 16*a^3*b^2) + tan(c/2 + (d*x)/2)^6*(20*a*b^4 - 20*a^4*b + 4*a^5 - 4*b^5 - 40
*a^2*b^3 + 40*a^3*b^2))) + (log(tan(c/2 + (d*x)/2))*(a - 2*b))/(d*(8*a*b^3 + 8*a^3*b + 2*a^4 + 2*b^4 + 12*a^2*
b^2)) + (log(a + b - a*tan(c/2 + (d*x)/2)^2 + b*tan(c/2 + (d*x)/2)^2)*(3*a^4*b + b^5 + 8*a^2*b^3))/(d*(a^8 + b
^8 - 4*a^2*b^6 + 6*a^4*b^4 - 4*a^6*b^2))